

Next Generation Compton Telescope Design Challenges

Bernard Phlips, J. Eric Grove, W. Neil Johnson, Eric A Wulf

Naval Research Lab

phlips@nrl.navy.mil

representing
NRL's High Energy Space Environment Branch

LAT Lessons for MeV Missions

Minimize passive material in and around detectors	;
but survive launch loads	

Eng Model Tracker Tower did not survive vibration tests, structural mount had to be redesigned

- Getting rid of heat
 - Removing heat from detectors
 - Managing large radiators

Temp gradient in tracker towers required active cooling during ground testing to protect assemblies. Spent ~\$10M on flight VCHP radiators and control system

- □ Application Specific Integrated Circuits / Electronics
 - Design and test cycle is slow
 - Qualifying design and parts for space and radiation environment
 - Encapsulation (plastic carriers) or chip-on-board become qualification and assembly headaches
 - Hi-reliability electronic parts are not readily available, particularly in 3.3V and 2,5V logic, ADCs, DACs, etc
- □ Space-qualified Computing is not state-of-the-art

LAT needed total of 16,000 ASICS in 10 applications.

Multiple revisions on front end ASICs created significant schedule delay LAT needed to qualify ~10,000 plastic-encapsulated ADCs and DACs

5 BAE Rad750 computers (including redundancy) were required to handle data volume (10k events/sec), perform background rejection and data compress to the available 400Hz event rate to the ground.

R&D Needs

Current State of the Art Designs

- □ Detector:
- 6-inch wafers
- 2 mm thick
- 2 mm guard rings
- □ ASIC:
- Custom ASIC design with Brookhaven National Laboratory

Long Term Developments

- Detectors:
- Larger (200 mm wafers)
- Thicker (Trenched)
- Edgeless

Silicon Compton Telescope Progress

Silicon strip detector on a 150 mm dia. wafer.

Spectrum of a ¹³³Ba source with ~4 keV FWHM resolution

3 9-cm detectors in series 64 strips (1.4 mm pitch).

133Ba line (356 keV) for 1 (**black**: 5.2 keV), 2 (**red**: 6.8 keV) and 3 (**blue**: 7.6 keV) detectors coupled together.

Si Strip Detector ASIC [De Geronimo, et al. 2008]

- 32 channels pos/neg polarity
- 200 e- RMS at 30 pF
- 400:1 dynamic range
- Peak Detect and memory
- Readout mux
- 5 mW per channel

R&D Needs

Current State of the Art Designs

- □ Detector:
- 6-inch wafers
- 2 mm thick
- 2 mm guard rings
- □ ASIC:
- Custom ASIC design with Brookhaven National Laboratory

Long Term Developments

- Detectors:
- Thicker (Trenched) silicon detector
- Larger (200 mm wafers) silicon detector
- Edgeless silicon detector
- Better scintillator

Standard 3-Dimensional Detectors

S.I. Parker, C. J. Kenney, J. Segal, *Nucl. Instr. Meth. Phys. Res. A* 395 (1997) 328

Short distance between electrodes:

- low full depletion voltage
- short collection distance
- more radiation tolerant than planar detectors!

DRAWBACK: Fabrication process of 3-D devices is not standard.

Am-241 Spectrum

- □ ²⁴¹Am source
- □ energy resolution is ~ 2.3 keV FWHM at 59.5 keV
- excellent charge collection

Larger Detectors

- □ Develop detectors from 200 mm (8-inch) wafers
 - 9,000 Ohm-cm material
 - 725 microns thick, 128 strips, each 125 mm x 0.97 mm
- □ Effective area: 156 cm²

200 mm Wafer Results

- Performance demonstrated
- □ Large number of bad strips
- □ Would need dedicated fab for good yield

Edgeless Detectors

- □Optical micrograph
 Edges are significant amount of passive mass
- □ Can make detectors without edges
- Research being used by RD-50 for ATLAS upgrade at CERN

Edgeless Detectors

inactive region

inactive region

- □ By adjusting surface charge on the edge of the detector, the right field can be achieved without guard rings.
- Made possible by Atomic Layer Deposition
- □ Have achieved dead regions of few microns on 300 micron-thick device

Srl-SiPMT Scintillation Detectors

- Srl new scintillator with good energy resolution and low background (unlike LaBr)
- Made Srl "pixel" detectors and read out with Si-PMT
- Will be space qualified in 2016
- Manifested for launch on DoD STP-Sat5 (NRL SIRI experiment)
 - Polar orbit
 - 1 year mission

Srl-SiPMT Spectra

- Detector non-linearity must be corrected
- □ Achieve 3.8% energy resolution at 662 keV

Conclusions

- Current state of the art:
 - Silicon: 6-inch, 2 mm thick
 - Scintillators: Nal, Csl, ...

Go with this, or improve basic detector technology?

- □ Larger, thicker, edgeless silicon detectors
- Other semiconductors? (CdTe, CdZnTe, InP)
- □ Other Scintillators? (SrI, NaI,...)

Backup Slides

Advanced Compton Telescope (ACT)

GeV γ's – Pair Telescope

Boggs, et al. 2006 (arXiv:astro-ph/0608532v1)

MeV γ's – Compton Scatter Telescope

Challenges of Silicon Compton

LAT Tracker Tray

- □ Silicon Compton requires double-sided strip detectors to position the Compton interactions in a single crystal
- Preferred detector thickness is 2 mm or greater
 - Higher depletion voltages
 - Higher quality silicon material

Silicon Compton Tray

3x3 array Double sided SSD

- Requires spectroscopy of events in silicon
 - more complex front ends
 - Pulse amplitude measurement
- Performance improves with lower energy threshold – better noise performance
- Fewer channels but likely higher power per channel

Si-Nal Prototype

Thick Trenched Gamma-Ray Detectors

Thick Silicon Strip Detectors via Microfabrication

Marc Christophersen,
Bernard Phlips, and Francis J. Kub
NRL

- Method to develop thicker silicon detectors by changing planar charge collection geometry
- ☐ Thick devices deplete at much lower bias voltages
 - Enables consideration of lower quality material
- □ The same principle could be applied to other semiconductors, e.g. CdTe, CdZnTe, or InP.
 - The short carrier lifetime can be overcome by "charge mining" with the trenches.

NRL's NanoScience Institute

Class 100 Cleanroom 5000 ft²

- SEM (scanning electron microscope)
- pattern generator
- mask aligner
- reactive ion etcher (RIE) & DRIE
- e-beam evaporator

Trenched Gamma-Ray Detector - Concept

- · mm thick detectors
- decouple thickness and depletion voltage

Silvaco[®] simulation result

Our goal:

5 mm thick trenched detector with near trenches for lateral depletion and charge collection.

Fabrication Challenges:

- Microfabrication high-aspect ratio trench/ hole arrays, millimeters deep
- Junction formation homogeneous junction (no ion-implantation, I2)
- Leakage currents maintain high minority carrier lifetime

Si Compton Design Drivers

- Commensurate energy resolution and position resolution for best Compton reconstruction.
 - mm positions, few keV energy resolution
- Minimize passive material in the detection volume
 - Passive material produces tails on the Point Spread Function, or
 - Results in loss of effective area, incorrect Compton reconstruction
- Minimize power
 - Power is expensive and large areas become problematic in launch and deployment
 - Related heat within the instrument is difficult to remove
- Maximize silicon depth and length of strip readout with single electronics chain, commensurate with requirements for max capacitance, single scatter in volume and Compton electron tracking desires.

5 mm thickness of Si strip detectors is near optimal

Silicon DRIE (Deep Reactive Ion Etching)

aspect ratio ~ 12

SEM micrograph, bird's-eye-view.

Final devices will have narrower trench arrays.

2-mm Thick Wafer

5 10⁻¹¹ substrate $\sim 20,000~\Omega cm$ 4 10⁻¹¹ 3 10⁻¹¹ 2 10⁻¹¹ 1 10⁻¹¹ 0 10 20 30 40 0 50 Bias [V]

Energy resolution: 3.0 keV FWHM at 60 keV

Full depletion at 50 V.

Silicon DRIE (Deep Reactive Ion Etching)

"Types" of deep anisotropic etching:

- Bosch process,
- Room T continuous process,
- cryogenic process.

maximal reported depth 300 – 600 μm (wafer through and via etching)

A. Ayon et al., Sens. Act. A, 91, 2001

SEM cross-section micrograph

Cryogenic DRIE

- no polymer contamination (reactor, substrate) in comparison to Bosch,
- low sidewall roughness,
- **DC** bias < 10 V (no silicon damage)
- high etch selectivity $\sim 500 1,000$ to SiO₂,
- BUT sensible process and not so flexible than Bosch process!

limitation of spontaneous chemical reaction and improvement of O sticking